Bartop Arcade Build Part 2

This is part 2 of the Arcade. The first post has the Arcade in a good working condition. This will cover some of the final touches.

I did a bit more work on the Marquee. I am in no way a graphic artist. I had downloaded some logos to do the initial graphic. I found some better ones to use and made some other changes to it. I then printed it out on my inkjet printer onto 3 sheets just like the previous test one I did on a black only laser printer. It turned out pretty well, I couldn’t do a full color graphic though. I think I will leave it at this paper graphics for awhile anyways.

For the Marquee there really aren’t any hot spots. I was thinking doing a frosted piece of Plexiglass behind the marquee to handle any hotspots, but that turned out to not be needed (with the paper that is). It is a little brighter than I think I want it, but I didn’t find it too distracting while test playing it. It is quite hard to photograph anywhere near properly though as bright as it is. I have at this point decided to not make a dimmer system for it. I have a couple of workable circuits that I have used for that in the past, I just don’t want to take the time at this point, when the biggest issue is taking photographs of it.

For the LCD I wanted to make a bezel/cover that went over it. To do this I put some 1/8th inch strips up the sides of the cabinet to rest the Plexiglas against. It slides up behind the Marquee bottom board, between it and the top edge of the LCD itself. For Mike’s it seemed he was putting the MDF strips up infront of the monitor? At least in his plans, that would have pushed it back, in my case with the thin strips they are even with the front of the LCD and are just guides to keep the plexiglass from flexing. Mike also had a small board along the bottom above the control panel, which I omitted due to the Plexiglas. I fitted the Plexiglas so that it just meets up with the back edge of the control panel. It is not held along the bottom and just goes up against the control panel board, so it can flex and make a gap there a bit. I may have to secure that in some way in the future, but currently it is minimal, and I do not want to make it difficult to remove the control panel if I can help it.

Above is the Plexiglas I was cutting for the screen. To cut it, I used a board and metal angle clamped together. I was cutting from the side on the right side where the knife is laying. Because the Plexiglas had a bad edge from when I purchased it, I needed to be sure to get one good long cut for the bottom edge. The top edge is hidden up past the marquee bottom board. This stuff is very hard, it is not the softer type so I found that it likes to fracture/crack. I managed to get a very good first cut on the top edge. The next cut, which I was doing in that picture really cracked up the edge. The last cut, cutting it down to the right width, that cut went very well thankfully. I had 1 factory edge and 2 cut edges exposed that turned out pretty well. It was very slightly too wide, to get it down to the right width I used some 180 grit sandpaper and a sanding block to get it just right.

The next part after fitting the Plexiglas was to get it in the final position with the LCD in place and the Control Panel in place. I then used a marker to mark the corners of the LCD behind the Plexiglas. I removed the Plexiglas, and monitor. I placed the monitor on the bench facing up and then placed the Plexiglass back over it using the marks I did while it was in the Cabinet to get a good view and check the marks were correct and centered properly. Once I was sure I had the corners marked correctly, I took away the monitor and flipped the Plexiglas to the back side. The back side being hte side that will in the end be toward the monitor itself once installed. From the back side, I cut into the protective plastic with a fresh Xacto blade around where the monitor will be placed, and removed the outer portion (yes only the outside part, not the center where the monitor will be). This left the “monitor area” covered and protected. I also kept the protective layer on the “front” side as well. Then I used some Gloss Black Rustoleum 2x Ultra Cover paint, painting that on the outer rim that I exposed by removing the film from it. This paint is on the back side of the plastic not the front, I have done this before for other projects. It leaves with me with a super gloss finish when viewed through the plexiglass and the paint won’t be touched so it won’t get scrathed. You could use any opaque paint color, in my case I was using Black due to the black case, red, blue anything really should work. Even Flat paints look super gloss from the front side. I have used dark flat primers before to get the same effect. The back is not flawless, it is not quite 100% opaque if back lit with a single coat(with more coats of paint it can be made fully opaque), but it is opaque enough for this use in my case with the single coat. Viewing it from the front the finish is flawless.

Above is the panel after painting it once I removed the protective layer from the inside. This reveals where the monitor will now be behind. The paint does take a while to dry well. I wanted to make sure it was good and dry before installing it, I didn’t want paint lifting where it meets the strips on the side. The final installation it went well, it is held tightly in place by the monitor at the top edge. I have a fair bit of pressure on the board there from the Monitor to get a little more tilt than the base will give on its own. I was very happy with the result.

Above you can see the thin strips the Plexiglas will rest on. After installing them I painted them gloss black to blend in. You can also see the door latch and spacer block to keep it from moving much. The little block at the bottom of the door is to keep it from going in to far, there is another stop block on the top corner as well, but it is out of view in the picture. The round speaker grills are again easy to see here as well as the chrome volume knob on the right.

Above is the Plexiglas installed with the monitor behind it before I removed the front protective film. Yes those are the wires leading to the front panel, when I reinstalled the panel I wrapped them up so they weren’t such a tangled mess. The monitor is there sitting on the blocking it is screw into the cabinet with. I have some pressure on the marquee bottom support board to get a little more angle out of it, as well as the block is a bit angled itself. I would have used the VESA mount board in the cabinet except this monitor doesn’t support VESA mounting. There are two screws in the back of the monitor base going into the block there. The block is built up so that the monitor was at the height I was going for, and it is secured to the bottom of the cabinet with 4 brackets with screws. I used brackets as I have it set so that I can get to the screws if I need to remove the monitor rather than gluing it in or putting in screws from the underside.

Above you can see the speakers installed before securing the wiring, the power supply board has been removed, or it would be attached there at the black and red wire, which now lead down to the 5Volt output on the Meanwell power supply below it. The other picture shows more of the internal wiring that goes to the Raspberry Pi, the two front mounted USB ports, the USB power cable which goes to the Meanwell 5Volt output as well. The safe shutdown/power up button wiring is there as well as the speaker input wiring. I ended up plugging the speakers into the Monitor’s Audio Output as I am using HDMI from the Pi. If I had plugged into the Pi I would have needed an audio ground loop isolator, because I have the Pi and the Speakers powered by the same power source. I had to do that with my Pi1541, and I had tested on this and had the same issue. Using the Monitor Audio Out that it gets from the HDMI input, lets me eliminate the need for that for this build.

Here is the back with the door latched of course. There is a fair gap at the hinge side, but with the wide hinge that does not show. I should have made it just a little shorter, it rubs easily, but I hope to not have to open it much. I also hope to not loose the keys.. You can see a bit of the run in the paint at the top, but it is on the back and shouldn’t be seen. Overall I have to say the paint turned out pretty good. There at the top, there is that extra T Molding strip on the Marquee Top. The Plug/Fuse/Switch unit in the back there can be wired a few different ways. The one I have has a lighted switch, that switch could be wired either as an Always On light even when turned off, or it can be wired at only to light up when the power is on. I have chosen to wire it so that it will only be lighted if the power is on. Some of them do come with a black switch and those don’t have lights in them. You could just switch the Hot line so that the light would not come on then because if the Neutral isn’t there it won’t light up. With the plug unit, again be certain they are secured well and not loose, a loose wire can cause heat and melting and potentially fire. I nearly soldered used solder and heat shrink on the plug unit for that reason, but I didn’t as then I would have to desolder it to ever remove the plug or power strip.

I had to edit the above picture, as the Marquee keeps washing out almost completely. That is the Marquee that is in it, I just took two pictures and over laid it over the lighter cabinet picture. The Marquee looks a little better in the picture than it looks to look at it. I did not remove the protective plastic from either side of the Marquee Plexiglas yet though. It turns out to be very hard to photograph this cabinet.

Above is the Pi 3B+ as it is sitting in the cabinet currently. I would have taken it out of the case and mounted it to the cabinet, but then I have to rig up a fan to it then. I may do that later. You can see in the picture the wires coming down to the GPIO Pins. The round momentary button on the back of the case there is wired to GPIO3 (Physical Pin 5) and Ground (Physical Pin 6) of the Pi 3B+. GPIO3 is a pin that will by default wake the Pi from a the shutdown/halt condition. Simply editing the /boot/config.txt file and adding the line “dtoverlay=gpio-shutdown” will activate GPIO3 to be a “shutdown” button. You can change the Pin that it will use for the Shutdown by defining the pin in the dtoverlay value. That will then make the other pin be the shutdown pin, but it won’t move the “wake/start” function from GPIO3. The Pi will start the Shutdown process as soon as it has been pressed. Once the Pi has shutdown, you can start it back up by pressing the button again (as long as you are using GPIO3 (Physical Pin5). There are other ways to set this up, they can include a delay where it will make sure the button is held down for a period of time, which could be handy to have. I went with the easiest option though, as I have the button on the back where it is not very likely to get bumped while the cabinet is in use. I found the instructions on how to set that up on this thread: https://www.raspberrypi.org/forums/viewtopic.php?t=217442#p1337231

I did do just a little testing firing up one of my old 2600 games. Asteroids, I managed to roll over the score easily. I was playing on the easiest level though. I went back and started with the next level and that did not go so well.

I want player 1 to be the left side, and player 2 to be the right side. I found after reinstalling the control panel that they were backwards. To correct his, I unplugged the joysticks from the USB ports on the Pi and swapped their positions. Joysticks are based on the USB Port they are plugged into. So Originally I must have had them in the other ports, and when I re connected them they were put in the opposite positions. I didn’t have to swap the control boards or anything.

The Pi is accessible from the back door if I need access to it. I can also easily remove the control panel. I have two brackets on the back of the Control Panel with screws into to keep it in from coming off. I briefly thought of making the SD Slot accessible on the Pi from the outside like I did with the Pi1541. It is a bit much with 3/4″ material though, and I don’t want the card to be to easy to remove and loose. If I want to add anything to it or make changes I have it connected to my wifi and I can access it over the network.

The Marquee top has some brackets and screws that I used to secure it to the cabinet. I want to have it remain removable to easily access the Marquee graphics etc if needed. If I make another I am thinking of making it set back just slightly then use painted angle metal pieces to hold the Marquee in place like full size machines did. This will mean there would be no T Molding across the Marquee Top and Bottom. It would make it so much easier to install and support the Marquee though. I think I will still use the light box design behind it. That worked great, and I hope Aluminum will distribute any heat from the LEDs which shouldn’t be very much. They are using nearly half an amp at 12volts, so there is some heat there over time.

So one may ask about what this project cost to build. In my case I believe that I have a little over $250 wrapped up in materials. I am not counting the Pi 3B+, SD card, Monitor or Power Strip. If those were purchased as well, I would have been looking at around $410. I did not include cost of Wood Glue, Brads, the bit of Aluminum sheet, as those are supplies I had around, as well as the corner blocks which are basically scrap wood. I did purchase a few tools, a 30mm Forster bit, a Slot Cutting bit for a router, and the Edge Guide Clamp, those items add up to around another $100. I now have those tools for future projects though.

I have enough MDF, LED strip light, hinge, Plexiglas and a few other bits for a second cabinet. I would need to buy some T Molding, Controls, the Pi, Monitor etc though. I would like to find a better way to cut the Plexiglas, the scoring it with a knife doesn’t work very well on this hard stuff, at least for long cuts. I managed to get it cut, but it could very easily have turned out bad. It really isn’t “Plexiglas” brand that I picked up, I think I have had some softer stuff in the past that was easier to cut, but that probably wouldn’t hold up well for this usage. I don’t remember Lucite cracking like this material has for me, I have used that in the past, it is pretty good stuff, although even more expensive. It has been quite a long time since I worked with it, so I don’t know if it was all that much more fun to work with.

In the end the cabinet is still difficult to photograph, at least with the camera I have. I guess Gloss Black is not much fun for that. Although it is not flawless, I am quite happy with the final result. Above the Plexiglas over the LCD is quite obvious though and gives a good view of how well that turned out for me. The little mix of colors of the buttons is that I purchase a Blue and Yellow set, and already had a white set. I felt mixing the colors gave a better effect.

Bartop Arcade Build Part 1

I have been wanting an arcade machine for a long time. These days there are a lot of options out there that make it easier to build your own. I purchased the Bartop Arcade plans from The Geek Pub http://www.thegeekpub.com He has several different plans, from a full sized stand up unit to a tabletop design, as well as the Bartop design that I went with. So you can pick which you want to go with, but be sure to buy the one you want.

It has been a lot of work. I mostly used a 50 In Clamp Edge And Saw Guide and circular saw to cut out the pieces. For the arc on the side cuts I used a jig saw, and I cut them out clamped together to get a proper match. With a table saw it would be much faster. I optimized the cut layout from the original to help me get some larger extra bits to work with in case I needed it.

I essentially cut out the parts the same as the plans. In the end I found there was an issue with the Marquee Top (B) and Top Door Frame (F). The Marquee Top and Top Door Frame should have been cut at an angle to meet nicely in the back. To correct this, I shortened the Top Door Frame a bit so that it just let the Marquee Top clear it. I then also added T molding to the back side of the Marquee Top, as it was now going to be an exposed edge. If I made another Arcade, I will be changing how I end up cutting that out. I may also make some other alterations to make it easier to put in the Marquee itself.

After cutting out all of the pieces, I did sand them all on both sides. You can see in the picture above that I laid them out on top of the second half of the 4’x8′ Sheet of 3/4″ MDF. This does only take half a sheet to make this unit. Depending how you build it though, you do need a bit of corner blocking to glue it up easily. In my case I could have used the “spare for lcd sides” cut into strips for the blocking. I also didn’t use the VESA mount on this build due to the monitor not supporting it. I did use blocking, partly the bit off the Door side, and mostly some old pine strips I had around.

Before assembly I used a slot cutter in a router for all of the T molding areas. I used a 1/16″ slot cutter. I took the pieces outside and use a clamp to clamp them down to my saw horse. Then it only took a couple seconds for each on to put in the slot. The biggest thing being to get the slot bit set perfectly center. The other thing, use a mask for this it was awful the first one blew back right at me. Beyond that it is easy to put in the slot.

I assembled the unit with corner blocking, glue and brads like was done by Mike at The Geek Pub in his video. Other methods could be used, if you want you can use screws. He mentioned Pocket screws, which I do have, but I didn’t feel like trying. I figured if I wasn’t careful they could split the mdf as well. If I used them I was probably going to still use glue too.. The blocking made it very easy to assemble. I was looking at trying to do it without putting in the blocking, but that made it difficult to get good alignment. The blocking makes it stronger too with more surface area for the glue.

I realized that I had not drilled for the speakers in the Marquee bottom board until after I had it installed. I used some Logitech 2 piece speakers for the arcade. Removing them from the shell, they have some 2″ speakers in them. I used a 2″ hole saw to make the holes in the board. I also had to drill for the volume control access. I removed the power Led from the board. While the board also had a Headphone jack on it, I decided it wasn’t practical to do anything with it. I needed a longer knob than the one it came with. That is also something I would do differently. Had I not already glued the board in, I would have carved out the back so I could have used a more standard length knob.

I then rewired the speakers for installation in the cabinet. I was going to reuse the original AC power unit so I setup to be able to put it in as well. Below you can see the speakers rewired to fit the cabinet.

These speakers operate off of 5Volts DC. In the end I didn’t like the exposed AC board inside the cabinet. I went with a Meanwell dual voltage power supply for the cabinet. This let me run the Raspberry Pi and the Speakers both off of the 5Volt DC on it. It also provides 12Volts DC, which is for the Fan and the Marquee lights.

The next part was the primer. I used the recommended Rustoleum Filler Primer. This is pretty neat stuff. It has a filler product in the paint. It looks like it is fuzzy, but it sands out amazing.

Don’t skip primer, It just won’t work if you are using MDF. I waited until the next day to sand it. I used 220 grit paper to take off the fuzz. I then followed up with some finer paper. From there I wiped it down with paper towels and brushed it well, then use a microfiber cloth to wipe it down. Then I painted it with some Rustoleum gloss black. I let that dry a day and took some 3000 grit to lightly sand any little bits that were in the paint. The paint I used is the 15 minute dry type to help keep the dust, bugs etc blowing into it. I found that it was better to do a single coat that caught most of the dust that got in it. Then I came back and did 2 more light coats after the 3000 grit. That later paint didn’t end up with as much dust in it. The last thing I did with the paint was a Rustoleum Clear Gloss coat. The Clear Gloss dried very fast, it was quite different and had a lot of over spray. When I was doing the painting I was wearing a mask as well. I was thinking of trying to polish it, but I decided I wasn’t going to be that crazy about it, and I wasn’t sure I had the clear on thick enough. I used 2 cans of primer and about 2 cans of the black. The clear coat was less than a full can. I did end up with some runs on the top back door frame piece. I used one of the spray handles for the cans, as seen in the picture below. That makes it much easier for me to get a decent finish and better control a well as saving my wrist.

Well, there were two other things I didn’t get drilled before the initial assembly. The first being the “safe shutdown button” for the Pi on the back beside the power jack. The other being the USB ports in the front right there.

Here is the safe shutdown hole in the back of the cabinet. I had to back bore it.

I had to backbore the Shutdown button here by the power port. The USB on the front nearly needed to be backbored as well. The USB port insert I used goes into a 30mm hole it barely has any threading with the 3/4″ MDF, but it was just enough.

The T molding is not too bad to do, but I wish it had went a little better. I got a section of 20′ and used all but about 18″ on this cabinet. There would have been that bit more if I had not put that additional piece on the back side of the Marquee Top. I am assuming I had the full 20′ I was to have received, but I can see how it did use that much. I just did it like Mike showed in his video, back cutting at the corners, and trying to put it in strait with a rubber mallet. I had a few issues here and there. I had some problem with snagging on the bottom and pulling it back out when moving the cabinet. I added some rubber feet and that should help to prevent it from dragging the edges too much in the future. I put a bit of glue toward the ends to help hold it snags a bit.

Here I have the control panel assembled and the USB ports installed after finishing the Clear Coat. I am using a Dell LCD that I had around. It was almost a perfect fit, and had HDMI input and audio output (no speakers internally). The control panel layout is in the plans as well, the template prints out on multiple pages that get taped together. I used a spray adhesive to hold it on like Mike suggested. It was a bit of a pain to remove all of the adhesive after the fact ( I used a different product than he had so maybe it is harder to get off?). The paper came off fine, but some of the spray stayed behind. I later used more of the templates in other areas and was careful to use as little spray as I could, that turned out better. I used the 2 player template and omitted 2 buttons, 8 was enough for me. You can choose to use the buttons you want. He also includes a 1 player layout template. The buttons I used are the pop in kind. I used a 30mm forstner bit for the hole with the 6 primary buttons, they went right in a perfect fit. For the Joysticks I used a slightly smaller sized bit, this didn’t cause issues in the travel of the stick. If I had used the 30mm bit, then the joystick washers wouldn’t have kept the holes covered at the maximum travel. For the smaller 24mm buttons I didn’t have the perfect drill bit for, so they were slightly loose, and a little glue on the bottom edge in a couple places to ensure they don’t move on me. The forstner bits do a very nice job, the butterfly bits I have are way too aggressive, but they are a weird type. The butterfly bits may be just fine if you are careful, mine are of a very aggressive verity that have a screw start point on them. I can’t hold them back or take it easy to get them started.. I used the bits in my cheap Harbor Freight Drill Press, which made the work go so nicely.

The one trick with the controls is they need to be wired identically, as the Pi can get confused if it has two of the same model of controllers with different layouts. I previously built a USB arcade joystick, with the same type of controls. I have wired both of the controllers on the Arcade as well as the separate USB arcade joystick the same so I can use it as a third player on the Arcade.

This was the first time I tried it out inside the cabinent. It is all together except the marquee and front plexi on the monitor. You can see the speakers in the top.

Here I worked on the Marquee light. I am using 12Volt White LED Strip light. I decided to build an Aluminum Light Box for it. I really didn’t have a good way to mount the LEDs otherwise, and I didn’t want the light going out other areas of the cabinet. The light box is about 1″ deep, and rests against the corner blocking, and almost against the speakers.

Here I am using clamps and a board like a break to bend the aluminum. It worked ok.
Here is the box. It was neater but I had it slight long and had to compress the ends down a bit.

Above you can see the LED Strip. I put it on the Sides not the bottom. This helps with Hotspots. In such a close space the points of light off of the LEDs would make hotspots all of the Marquee otherwise. Below you can also see the Speaker grills and volume knob installed. The Speaker grills are made from some 2″ desk grommets from the hardware store, and then covered in some speaker cloth (salvaged from an old speaker box I had).

Above you can see the back door. The door was slightly taller than it should have been, possibly a little wave and variation in my cuts for the back. The bigger thing was the that it turned out to be somewhat narrow, I am not sure if was my marking or cutting or what. The door Frame pieces seemed to all go just fine, but there is a bit more gap left and right. So I would watch for that if I make another. I wasn’t going to use a piano hinge for it, but due to the gap that was the only way I was going to be able to hide it well. I also decided to get a lock, not that I wanted to lock it, but that was the most elegant looking latching method, and also when moving I didn’t want a “semi-secure” latch that may flip open accidentally. The holes were drilled with other templates in the plans. The bottom is the 80mm fan pattern while the top two are the hole patterns for the suggested speakers. I used the speaker pattern holes just for additional venting on the door though. Here you can also see the door once it was installed with the 80mm fan 12Volt and latch assembly. The modification to the door frame top that I mentioned above did have the added benefit of adding some ventilation as well as there is a small gap there now. I like that bit of the change as heat will build up and would have caught in the top had it been sealed up. You can also see the wiring going to the power strip I put in there. It is wired directly to the rear power jack. I had it around and it was easy to work with. I really did not want to get an electrical box like the plans suggested. This was a bit easier and I think did a nice job. It also has the added benefit that in my case it is a surge protector and not just a temporary “power tap” as well, not just a power strip.

The power jack includes a switch and fuse. I like it, but some have had it has issues with melting. I could see that if the connections were a bit loose, that causes the conductors to get hot. The Safe Shutdown button for the Pi is also installed there. The button is wired up to the gpio on the Pi and the Pi is setup to use do a safe shutdown if it is pressed. It will wake the Pi after shutdown if pressed again. I will cover that in Part 2, it is quite easy with the Pi 3.

The Marquee just has some paper in it behind the Plexiglass to test the brightness. It is a little too bright. I am probably going to dim the LEDs a bit. I am not sure how I will do that but I have an idea. That will be in another post though. So this is Part 1 of at least 2 parts.

I have to finish the Marquee, if I make a dimmer for it that will be covered in another post. I am also going to put Plexiglas in front of the monitor to hide it. Once I have the Plexiglas cut for the front of the monitor I will be able to mount the monitor in the cabinet. The Monitor I have does not have a VESA mount, so I have secured it to a built up block that I will secure with some brackets to the bottom of the cabinet. I don’t know the exact final position until the Plexiglas is in. The Marquee top needs secured as well, but I have to finish the Marquee first. I do intend to keep the Marquee Top removable if needed, but not just friction fitted like it has been so far now. The Pi is also floating free in there. I have been thinking of pulling it out of the case and mounting to the cabinet as a bare board, but I do want to put a fan on it still if I do that. To start with the Marquee I will probably finish a design for it and reprint it on my inkjet printer instead for some color. I may get proper marquee made professionally later on. I may get some side graphics for the cabinet as well, but not full side covering graphics (not after the T molding is installed).