The Commodore 64 326298 Rev A has a different reset circuit. The 556 is wired in with a way that it keeps the reset line pulled to 5V and will supply as much current to that as it can. There are various ways to rework the circuit from over the years. I was looking at the least invasive way to accomplish this. I ran across a post on the Backbit Forum, as this reset being the way it is prevents the Backbit cartridge from working properly. It also affects other cartridges that use the Reset or have Reset buttons integrated into them. When they try to pull Reset to Ground the 556 works hard to keep it from resetting. It may crash the computer or cause glitches, probably as much as anything because it pulls the 5V line down starving the computer for power.
The process posted on the forum was to install a 1k Resistor in R36. This is a pull up resistor that keeps the Reset line pulled to 5V but “gently”. If it is missing the system could randomly reset, or be stuck in reset. The second part is to disconnect Pin9 on the 556 IC. We only want to disconnect the pin, the “wire” that is in the board there needs to remain connected. The simplest and easiest way to accomplish this would be to cut the leg off the 556. I didn’t want to do that.
What I ended up doing was desoldering the 556 from the board. I then took a 14pin machine pin IC Socket and clipped the bottom of Pin9 from it. I then paced he modified socket into the board so that Pin9 on the 556 is not going to the board. The Wire though is still going from the Pin9 Pad to Pin13 but that wire is no longer making contact with Pin9 of the 556. I then installed the 556 into the socket. On power on the system didn’t work. I checked the work, and then also tested the 556. The 556 had failed, it may have been during desoldering it, but it also may be that a portion of the 556 had been damaged by trying to use the Reset button on my cartridge. It may still have worked with Pin9 connected. I did have a spare so I tested the replacement and installed it. On powering it up the system worked normally again. I also tested using the reset button on the cartridge and that worked properly now. R36 is installed, it is a 1.5k resistor, a special precision one I have a small stock of, as I was short on 1k resistors at the time.



I believe if I had not done the Reset Modification that my next Modification, the Switchless Kernel ROM probably wouldn’t have worked normally. It also pulls Reset low, which it couldn’t sink all the current required to overcome the 556 previously.
C38 was previously replaced with a 4.7nF capacitor when I replaced the Electrolytic Capacitors to make the Restore key responsive. With the factory 51pF capacitor you have the hit the Restore key quite hard to get it to register usually, I don’t know if that would in any way affect the Kernal Switcher, as I haven’t seen it said that mod needs to be done. I did it as part of the recaping process based on it being recommended by Console5 where I purchased the kit. It did work as described, I tested both before and after switching that capacitor out.
Kernel Switcher:
The I am using bwak’s SKS64 “C64-Switchless-Multi-Kernal-27C256-adapter” project. This is a custom PCB that works as an adapter to install a 27256 as a 4 way Kernal ROM replacement. It is controlled with an ATTiny85, an early version used a PIC instead. I happened to have some ATTiny85s and liked the idea of using one for this. There are also ATMega based Arduino type board options out there. I am using a Pro Mini Arduino board for my Commodore 128 Switchless Kernal. This ATTiny was a neater solution for this, it is a all-in-one option as we already need an adapter board to convert the 27256 to work with the Commodore 64.
It has very good documentation at his Github page. There are considerations on what order your solder the parts together. He does cover that in his documentation.





The documentation shows where you can tap into the required signals on the C64 mainboard. The Reset, Restore and EXRom lines. Keep in mind the images below are for the 326298 Rev A, the guide from bwak shows similar images of all the various board types for reference.



I preped the board putting in single angled pin headers for the three signals and replaced the old single wipe socket for the Kernal ic. Of course I messed up and used the only socket I had, which you can see in the picture is solid in the center so the ATTiny85 on the bottom of the adapter can’t go in place.. So I have to replace it again, this time with machine pin header strips, as I don’t have an appropriate machine pin or other hollowed out socket to put on the board.

Since I had the wrong socket, I had to use the Turn Pin socket strips.


Now that the socket problem is sorted, I can get the adapter installed.

I was glad I was able to use some premade dupont cables I had. They are actually all premade cables from my breadboard cables I have. For the LED cable I just swapped the single dupont plastic holder for a tripple holder. There is an issue with just using the stock Red LED, but for now it works.
Note: I quickly replaced the Stock Red LED with a RGB LED, while it worked and the pictures in this section are showing the wiring for that, you only had the LED on if it was in Kernal 1, so the computer didn’t give an indication on the case that the power was on. The code could be change to always keep the RED LED on and just blink, but I didn’t want to look into what that involved. I just went with swapping to the RGB LED as I had them anyways.



The documentation is a lacking information on making the file to program the Eprom. You can get information from bwak on doing similar things by looking at the documentation on his VersaCart project. I’ll cover some basics blow.
The 27c256 is a 32k Eprom that can hold four 8k Kernal ROMs. I program the Eprom with my TL866ii plus.
To prepare the bin file for the Eprom. I collected them all in the same folder. I am using the Stock Kernal for the first one, then JiffyDos from RetroInovations, MasterRom 64, and JaffyDos (customized JiffyDos). Taking those 4 files in a folder, then open a Command Prompt window and while in the folder with the files use the command below. This is for the exact filenames I had, so your do need to be sure to enter the filenames you have instead. The U4_32KuB.bin is the 32k bin file I will use with my TL866ii to program the 27c256 Eprom. The code below it all in 1 line, if it is wrapped to two or more lines when viewing this page keep that in mind.
copy /b kernal.901227-03.bin+JiffyDOS_C64_6.01.bin+MASTEROM64_V3.0.BIN+jaffydos.bin U4_32KuB.bin
I will say JaffyDOS was a bit annoying to create. I couldn’t find proper instructions on how to accomplish it. JaffyDOS is created with a Commodore 64 .prg. You need to run it from the Commodore 64 Vice Emulator. You answer some customization settings once you manage to get it mounted properly and get it to where it can find your “JiffyDOS_C64_6.01.bin” which it has to be able to access. Running it properly will then create the jaffydos.bin file in the same folder as “JiffyDOS_C64_6.01.bin” had been located in. I did find some apparently outdated and possibly incomplete instructions and fumbled through getting the prg in Vice and the folder where the JiffyDOS bin was.
Once you have the 32k bin it is a simple task to use the TL866ii to burn the data to the Eprom. I will not go into detail on that, it is easy to find instructions on using at TL866 to program an Eprom or EEprom etc.
So the next bit that was a bit lacking in the documentation is programming the ATTiny85. You need to setup the Arduino IDE to be able to use the ATTiny85, and use bwak’s files to compile the program file. bwak does cover that you need to disable the Reset pin on the ATTiny if you want to use the EXRom function which enables doing a Hard Reset rather than the standard “Soft” Reset, if you are just using the Arduino IDE to program the ATTiny, then I don’t know how you disable the Reset pin, I think one or more of the ATTiny board types can do that. The ATTiny core I use for Arduino apparently doesn’t, or doesn’t make it obvious how to to it. The main reason I expect is they don’t want it to be easy for you to accidentally doing it without knowing that you will no longer be able to program the ATTiny with the Arduino IDE you will then have to use a HV(High Voltage) Programmer. If you have a TL866ii, it is a HV Programmer, it can set the Reset disable fuse, and also enable reset again if needed as well. He does cover that in his document. I actually used the Arduino IDE to program the ATTiny85, then used the TL866ii Plus to disable the ATTiny’s Reset pin fuse. You can also use the TL866ii to upload the Hex file created by the Arduino IDE though, which is in bwak’s document.
For now I just have the Stock LED in place. I will have to finish wiring up a RGB LED so I can then see which ROM is enabled by looking at it. I was hoping it would just keep the standard LED enabled, maybe somewhere in the code there is an option to tell it to just use the RED LED, I didn’t notice it though. The board looks like it is intended to be alternately used with the Stock LED though.




Beyond the LED being off for all but the First ROM (the Stock ROM in my case) it is working great. I’ll get that LED wired up and installed shortly. I have the right RGB LED, I just didn’t get around to making it up initially, I really didn’t want to make it up. I may look at the Code and see if there is an option to change the LED output behavior it is about as easy to make up the RGB LED as it is to pull the chip and recompile the code.





















































































































